

Year 12 Methods Units 3,4 Test 2 2021

Section 1 Calculator Free Area, Fundamental Theorem, Exponential Function

DATE : Thursday 25 M	arch TIME: 25 minutes	MARKS: 25
INSTRUCTIONS: Standard Items: Pe	ns, pencils, drawing templates, eraser	
Questions or parts of question	ns worth more than 2 marks require working to be shown to receive ful	l marks.

1. (4 marks)

Determine $\frac{d}{dx}$ for each of the following.

(a)
$$e^{1-x}(x^e-8)$$
 $\frac{d}{dx} = (x^e-8)(-e^{1-x}) + e^{1-x} = e^{-1}$ [2]

(b)
$$\frac{d}{dt} \int_{-1}^{x} \frac{e^{\pi} - e^{t+1}}{\sqrt{1+t}} dt = \underbrace{e^{\pi} - e^{x+t}}_{1+x}$$
 [2]

2. (11 marks)

(a) Determine each of the following.

(i)
$$\int 3xe^{x^2-6}dx = \frac{3}{5} \int 2x e^{x^2-6} dx$$
 [2]
$$= \frac{3}{2} e^{x^2-6} + c$$

(ii)
$$\int \frac{8e^{2x} + e^{-x+1}}{e^{-x}} dx = 8 \int e^{3x} dx + \int e dx$$

$$= \frac{8}{3} \int 3e^{3x} dx + ex + c$$

$$= \frac{8}{3} e^{3x} + ex + c$$

(b) Given
$$\frac{dP}{dt} = e^{4-2t}$$
 determine an expression for P if $P = \frac{e^2}{2}$ when $t = 1$ [3]
$$P = \int e^{4-2t} dt \qquad \qquad \frac{e^2}{2} = -\frac{1}{2}e^{4-2} + c$$

$$P = -\frac{1}{2}\int -\lambda e^{4-2t} dt \qquad \qquad e^2 = c$$

$$P = -\frac{1}{2}e^{4-2t} + c \qquad \qquad P = -\frac{e^{4-2t}}{2} + e^2$$

(c) Evaluate
$$\int_{0}^{1} \frac{d}{dx} \left(\frac{x^{3}}{x^{2}+1}\right) dx$$

$$= \left[\frac{x^{3}}{x^{2}+1}\right]_{0}^{1}$$

$$= \frac{1}{2} - \frac{0}{1}$$

$$= \frac{1}{2}$$

3. (6 marks)

(a) Determine
$$\frac{d}{dx}xe^{2x} = e^{2x} + 2xe^{2x}$$
 [2]

Hence or otherwise evaluate exactly

(b)
$$\int_{0}^{1} 2xe^{2x} dx$$
 [4] $\int_{0}^{1} xe^{2x} dx = e^{2x} + 2xe^{2x} dx$ [4]
$$\int_{0}^{1} dx e^{2x} dx = \int_{0}^{1} e^{2x} dx + \int_{0}^{1} 2xe^{2x} dx$$
 [4]
$$\left[xe^{2x}\right]_{0}^{1} = \frac{1}{2} \int_{0}^{1} 2e^{2x} + \int_{0}^{1} 2xe^{2x} dx$$
 $e^{2} - 0 = \left[\frac{1}{2}e^{2x}\right]_{0}^{1} + \int_{0}^{1} 2xe^{2x} dx$ $e^{2} - \frac{1}{2} + \int_{0}^{1} 2xe^{2x} dx$ $e^{2} + \frac{1}{2} = \int_{0}^{1} 2xe^{2x} dx$

4. (4 marks)

Determine and classify all stationary points of the curve $y = x^2 e^x$.

$$y' = 2xe^{x} + x^{2}e^{x}$$

$$2xe^{x} + x^{2}e^{x} = 0$$

$$e^{x} (2x + x^{2}) = 0$$

$$e^{x} = 0 \qquad 2x + x^{2} = 0$$

$$x = 0, -2$$

$$y'' = 2e^{x} + 3xe^{x} + 2xe^{x} + x^{2}e^{x}$$

$$= 2e^{x} + 4xe^{x} + x^{2}e^{x}$$

$$y'/x=-2$$
 = $2e^{-2} - 8e^{-2} + 4e^{-2}$
 $\angle O$... MAX $(-2, \frac{4}{e^2})$

Year 12 Methods Units 3,4 Test 2 2021

Section 2 Calculator Assumed
Area, Fundamental Theorem, Exponential Function

STUDENT'S NAME

DATE: Thursday 25 March

TIME: 25 minutes

MARKS: 28

INSTRUCTIONS:

Standard Items:

Pens, pencils, drawing templates, eraser

Special Items:

Three calculators, notes on one side of a single A4 page (these notes to be handed in with this

assessment)

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

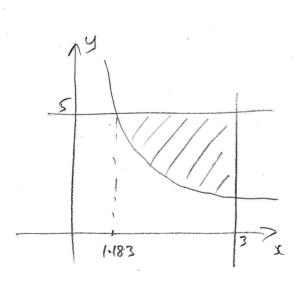
5. (4 marks)

Determine the area enclosed by x = 3, y = 5 and $y = \frac{2}{x^2 - 1}$.

$$AREA = (3-1.183)5 - \int_{-1.183}^{3} \frac{2}{x^{2}-1} dx$$

$$= 9.1 - 1.8$$

$$= 7.3$$



6. (6 marks)

Scientists study a population of mice over a ten week period and conclude that the population is increasing at a rate given by $R'(t) = 28e^{0.15t}$ where t is the number of weeks since the study began and an initial population of 30 mice.

(a) What is the change in the population in the seventh week of the study? [2]

(b) What is the average weekly increase in mice over the ten week period?

$$\int_{0}^{10} 28e^{-0.15t} dt$$

$$\approx 65/WEEK$$

(c) How long does it take for the mice population to reach 150?

$$\int_{0}^{k} 28e^{0.15t} dt = 120$$

$$\frac{28}{0.15} \int_{0}^{0.15} e^{0.15t} dt = 120$$

$$\int_{0}^{k} e^{0.15t} \int_{0}^{k} = 120 \times 0.15$$

$$e^{0.15k} = 0.643$$

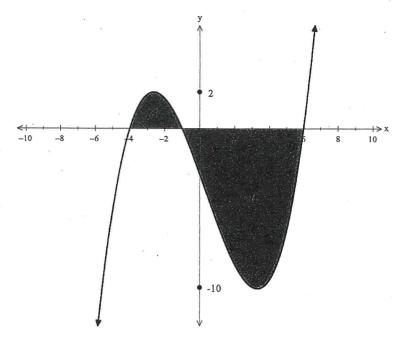
$$e^{0.15k} = 1.643$$

$$k = 3.3 \text{ WEEKS}$$

[2]

[2]

7. (10 marks)



In the diagram above showing the graph of y = f(x), the shaded region A has an area of 5 square units. Shaded region B has an area of 30 square units.

Using the information above, determine

(a)
$$\int_{-4}^{6} 2f(x)dx \qquad -$$

(b)
$$\int_{-4}^{-1} (f(x)+2)dx = \int_{-4}^{1} f(x) dx + \int_{-4}^{1} 2 dx$$
 [3]
= $5 + \left(2 - \left(-8\right)\right)$

(c)
$$\int_{3}^{2} f(2x+2)dx$$
 [3]
$$= \int_{2}^{-3} f(2(x+1)) dx = \frac{5}{2} - \frac{30}{2}$$

$$= -\frac{25}{2}$$

$$= -\frac{25}{2}$$
(d) $\int_{-1}^{6} f'(x)dx = f(6) - 6(-1)$

$$= 0 - 0$$
[2]

8. (4 marks)

A curve for which $\frac{dy}{dx} = -e^{kx}$, where k is a constant, is such that the tangent at $(1, -e^3)$ passes through the origin.

Determine the gradient of the tangent. (a)

$$M = -\frac{e^3}{1}$$

Determine the equation of the curve. (b)

[3]

$$y = \int -e^{3x} dx$$

$$=-\frac{1}{3}\int 3e^{3x} dx$$

$$y = -\frac{e^{3x}}{3} + c$$

$$(1,-e^3)$$

$$(1,-e^3)$$
 $-e^3 = -\frac{e^{3x}}{3} + c$

$$-e^{3} = -\frac{e^{3}}{3} + C$$

$$y = -\frac{e^{3x}}{3} - \frac{2e^{3}}{3}$$

9. (4 marks)

A continuous function f(x) is increasing on the interval 0 < x < 2 and decreasing on the interval 2 < x < 6. Some of its values are given in the table below.

x	0	1	2	3	4	5	6
f(x)	5	16	27	23	16	0	-12

The function F(x) is defined for $0 \le x \le 6$ by $F(x) = \int_{0}^{x} f(t)dt$.

(a) At which value of x in the interval $0 \le x \le 6$ is F(x) the greatest? Justify your answer.

$$\chi = 5$$
 AREA KEEPS INCREASING UP
TO WHERE $f(x) = 0$

(b) At which value of x in the interval $0 \le x \le 6$ is F'(x) the greatest? Justify your answer.

[2]